Efficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning
نویسنده
چکیده
Decomposing tensors into orthogonal factors is a well-known task in statistics, machine learning, and signal processing. We study orthogonal outer product decompositions where the factors in the summands in the decomposition are required to be orthogonal across summands, by relating this orthogonal decomposition to the singular value decompositions of the flattenings. We show that it is a non-trivial assumption for a tensor to have such an orthogonal decomposition, and we show that it is unique (up to natural symmetries) in case it exists, in which case we also demonstrate how it can be efficiently and reliably obtained by a sequence of singular value decompositions. We demonstrate how the factoring algorithm can be applied for parameter identification in latent variable and mixture models.
منابع مشابه
Tensor decompositions for learning latent variable models
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their low-order observable moments (typically, of secondand third-order). Specifically, parameter estimation is reduced to the...
متن کاملEscaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition
We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows for efficient optimization. Using this property we show that from an arbit...
متن کاملTensor Decompositions for Learning Latent Variable Models Report Title
This work considers a computationally and statistically e?cient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their loworder observable moments (typically, of secondand third-order). Speci?cally, parameter estimation is reduced to the pro...
متن کاملDifferentially-Private Orthogonal Tensor Decomposition
Differential privacy has recently received a significant amount of research attention for its robustness against known attacks. Decomposition of tensors has applications in many areas including signal processing, machine learning, computer vision and neuroscience. In this paper, we particularly focus on differentially-private orthogonal decomposition of symmetric tensors that arise in several l...
متن کاملAnalyzing Tensor Power Method Dynamics in Overcomplete Regime
We present a novel analysis of the dynamics of tensor power iterations in the overcomplete regime where the tensor CP rank is larger than the input dimension. Finding the CP decomposition of an overcomplete tensor is NP-hard in general. We consider the case where the tensor components are randomly drawn, and show that the simple power iteration recovers the components with bounded error under m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.3233 شماره
صفحات -
تاریخ انتشار 2013